Phosphorescence from pyridine induced by molecular complexation

R. SNYDER and A. C. TESTA

Department of Chemistry, St. John's University, Jamaica, N.Y. 11439 (U.S.A.) (Received April 21, 1978)

The absence of luminescence from pyridine in condensed media has remained a perennial problem of interest to many photochemists. Observation of the very weak fluorescence from pyridine vapor ($\phi_f \approx 10^{-4}$) was recently reported [1]. In contrast benzene exhibits fluorescence and phosphorescence [2]. It is generally accepted that the lowest triplet state in pyridine is π, π^* and, despite the contrary, phosphorescence should be expected. The explanation for the lack of luminescence may involve efficient internal conversion, $S_1 \longrightarrow S_0$, or a low triplet yield, a reversible non-productive photochemical event, or efficient radiationless decay in the triplet state, $T_1 \longrightarrow S_0$. From fluorescence lifetime and flash photolysis studies with some aminopyridines we have previously provided evidence that the triplet yield is solvent dependent [3, 4]. The triplet yield of pyridine has been determined to be 0.03 [5, 6]. If indeed there are triplets formed in the excitation of pyridine then in principle some perturbation technique such as protonation or complexation may enhance the possibility of observing luminescence. A successful attempt at the former has recently been realized [7]. The present study deals specifically with phosphorescence induced by complexation.

Upon addition of a Lewis acid such as BCl_3 to pyridine in cyclohexane a 1:1 complex is generated whose formation has been known for some time [8]. Complexation of the pyridine leads to changes in its UV absorption spectrum, which are shown in Fig. 1. The appearance of a new absorption band with a maximum at 265 nm is attributed to the electron donoracceptor (EDA) complex.

Irradiation with 254 nm of 1.4×10^{-4} M pyridine with 3.5×10^{-5} M BCl₃ in cyclohexane at 77 K gives rise to an unstructured phosphorescence with a peak at 429 nm which is shown in Fig. 2. Since neither pyridine nor BCl₃ luminesce this emission can readily be attributed to the lowest triplet state of the EDA complex, whose energy is below that of the pyridine triplet (3.69 eV) [9]. The phosphorescence intensity increases with BCl₃ concentration; however, precipitation of the solid EDA complex occurred when [BCl₃] exceeded 4×10^{-5} M, which limited the concentration range studied.

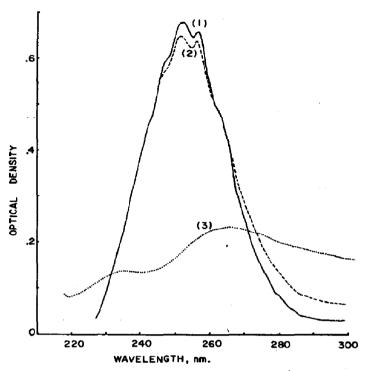


Fig. 1. UV absorption changes of 3.3×10^{-4} M pyridine in cyclohexane upon addition of BCl₃: (1) no BCl₃, (2) 1.1×10^{-5} M BCl₃. Spectrum (3) is that of 6.6×10^{-5} M pyridine with 1.4×10^{-4} M BCl₃, which shows a new absorption band at 265 nm due to the complex.

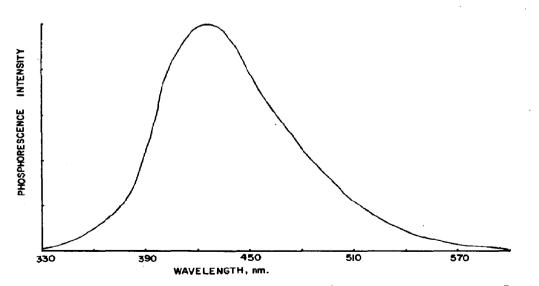


Fig. 2. Phosphorescence emission from 1.4×10^{-4} M pyridine and 3.5×10^{-5} M BCl₃ in cyclohexane (77 K, 254 nm excitation).

It appears that the complexation involving the non-bonding electron pair on nitrogen has either increased intersystem crossing or removed an important radiationless process. The energy of the B-N bond formed in the complex is considerably greater than that of a hydrogen bond (5 - 8 kcal mol⁻¹) as is readily seen in the exothermicity of the reaction between pyridine and BCl₃ which is about 39 kcal mol⁻¹ [10, 11].

The energy of the charge transfer triplet state is 2.89 eV, using the emission maximum. The oxidation potential of the donor pyridine is reported to be +2.07 V against the saturated calomel electrode in acetonitrile [12]. In contrast the ability to reduce BCl_3 is not known on a quantitative scale. If we apply the equation $E_{CT} = E_{ox}(D/D^+) - E_{red}(A/A^-) + 0.32$ V [13], then we can calculate the one-electron reduction potential of BCl_3 to be approximately -0.50 V against the saturated calomel electrode.

Regarding the lack of phosphorescence from pyridine it appears that the influence of the non-bonding electron pair in enhancing radiationless processes in the singlet and triplet states has been sufficiently minimized by complexation to allow phosphorescence.

- 1 I. Yamazaki and H. Baba, J. Chem. Phys., 66 (1977) 5826.
- 2 R. S. Becker, Theory and Interpretation of Fluorescence and Phosphorescence, Wiley, New York, 1969.
- 3 J. Wolleben and A. C. Testa, Mol. Photochem., 7 (1976) 277.
- 4 S. Babiak and A. C. Testa, J. Phys. Chem., 80 (1976) 1882.
- 5 J. Lemaire, J. Phys. Chem., 71 (1967) 612.
- 6 R. B. Cundall, A. S. Davies and K. Dunnicliff, in A. B. Zahlan (ed.), The Triplet State, Cambridge Univ. Press, New York, 1967, p. 183.
- 7 A. G. Motten and A. L. Kwiram, Chem. Phys. Lett., 45 (1977) 217.
- 8 W. Gerrard and M. F. Lappert, J. Chem. Soc., (1951) 1020.
- 9 D. Evans, J. Chem. Soc., (1957) 3885.
- 10 H. C. Brown and R. H. Horowitz, J. Am. Chem. Soc., 77 (1955) 1730.
- 11 H. C. Brown and R. R. Holmes, J. Am. Chem. Soc., 78 (1956) 2173.
- 12 C. K. Mann and K. K. Barnes, Electrochemical Reactions in Nonaqueous Systems, Marcel Dekker, New York, 1970.
- 13 A. Weller, in M. Gordon and W. R. Ware (eds.), The Exciplex, Academic Press, New York, 1975, p. 23.